Senin, 23 September 2013

LEUKEMIA

LEUKEMIA

Apa yang ada difikiran kalian jika mendengar kata itu? mungkin apa yang kalian fikirkan sama dengan apa yang saya fikirkan.

TAKUT, pasti kalian merasakan takut jika mendengar kata LEUKEMIA. Mungkin juga membayangkan bagaimana jika hal itu terjadi pada diri kita yang sama sekali tidak siap dan mungkin juga tidak akan siap untuk menerimanya. Tapi apakah kalian pernah berfikir bagimana jika hal itu benar-benar terjadi pada diri kalian? Lalu apakah yang akan kalian lakukan? Apakah pasrah menerima kenyataan? Putus asa dan semangat, ataukah kalian akan menjadi survivor leukemia?

Karena akhir2 ini banayk sekali kasus2 mengenai penyakit yang sangat mematikan itu saya berfikir, bagaimana jika hal itu mengenai pada diri saya? Apakah orang lain akan begitu iba melihat keadaan saya? Karena jujur tiap kali saya melihat ada orang yang menderita penyakit tsb saya sangat merasa iba dan kasihan terhadap orang tsb.

Saya sangat salut terhadap para survivor leukemia yang tidak patah semangat untuk melanjutkan hidup mereka, walaupun dalam hati mereka mungkin ada rasa pesimis untuk dapat bertahan hidup dalam jangka waktu yang lama.

Memang tulisan saya ini tidaka akan membantu apa2 bagi mereka yang sedang berjuang melawan penyakit mereka hingga saat ini,  tapi saya hanya ingin berbagi, bahwa orang lain seperti saya sangat salut terhadap perjuangan mereka para survivor.

Saat ini masih belum ada penelitian atau jawaban pasti dari para dokter mengenai penyebab penyakit leukimia itu. Dokter jarang tahu mengapa ada orang yang mendapat leukemia dan yang lain tidak. Namun, penelitian menunjukkan bahwa faktor risiko tertentu meningkatkan kemungkinan seseorang menderita leukemia.
Beberapa faktor-faktor resiko ini adalah:
1. Radiasi: Orang yang terpapar radiasi sangat tinggi radiasi jauh lebih besar kemungkinannya untuk mendapatkan AML, CML, ataupun ALL.

2. Ledakan bom atom: Radiasi tingkat sangat tinggi yang disebabkan oleh ledakan bom atom (seperti yang terjadi di Jepang selama Perang Dunia II), orang, terutama anak-anak yang bertahan hidup dari ledakan bom atom akan meningkat risikonya terkena leukemia.

3. Radioterapi: Sumber lain terkena radiasi tingkat tinggi adalah pengobatan kanker dll. Radioterapi dapat meningkatkan risiko leukemia.

4. Rontgen diagnostik: X-ray gigi dan X-ray diagnostic lainnya (seperti CT Scan) merupakan paparan radiasi tingkat rendah. Belum diketahui apakah ada keterkaitan pada radiasi tingkat rendah untuk anak-anak atau orang dewasa dengan leukemia.

5. Merokok: Merokok dapat meningkatkan risiko terkena AML.

6. Benzene: Paparan benzena di tempat kerja dapat menyebabkan AML. Hal ini juga dapat menyebabkan CML ataupun ALL. Benzene digunakan secara luas dalam industri kimia, juga ditemukan dalam asap rokok dan bensin.

7. Kemoterapi: Pasien kanker yang mendapatkan kemoterapi kadang-kadang kemudian juga terkena AML ataupun ALL. Misalnya, obat-obatan yang merupakan agen atau inhibitor alkilasi topoisomerase sering dikaitkan dengan resiko kecil berkembangnya leukemia akut.

8. Down Sindrom & beberapa penyakit keturunan lainnya: meningkatkan risiko berkembangnya leukemia akut.

9. Sindrom myelodysplastic dan kelainan darah tertentu lainnya: Orang dengan kelainan darah tertentu akan meningkatkan risiko terkena AML.

10. Virus Human T-cell leukemia tipe I (HTLV-I): Orang dengan infeksi HTLV-I mengalami peningkatan risiko terkena leukemia jenis langka, yang dikenal sebagai T-sel yang merupakan jenis leukemia yang tidak menular.

11. Sejarah keluarga leukemia: Ini jarang terjadi. Namun bila ini terjadi, kemungkinan tipenya adalah CLL. Namun, hanya beberapa orang dengan CLL memiliki ayah, ibu, kakak, adik, atau anak yang juga memiliki penyakit ini.
materi referensi:
www.cancerhelps.com


Menurut Kompas.com
Bukan cuma orang dewasa yang bisa terkena kanker. Anak-anak pun tak luput dari penyakit paling ditakuti ini. Jenis kanker yang paling sering ditemukan pada anak adalah leukemia atau kanker darah.

Boleh dikatakan hampir 70 persen kanker pada anak adalah leukemia. Di urutan selanjutnya adalah kanker padat seperti kanker mata, ginjal, atau tulang.

Leukemia terjadi ketika sumsum tulang memproduksi sel darah putih (leukosit) secara berlebihan. Sebagian sel darah putih itu berubah sifat menjadi ganas. Akibatnya, sel darah putih yang seharusnya menjadi "tentara" untuk melindungi tubuh justru menekan trombosit (keping darah) dan eritrosit (sel darah merah).

Karena mengalir bersama darah, sel darah putih menyebar termasuk ke otak, gusi, kulit, tulang, hati, limpa, dan testis. Serangan sel darah putih yang mengganas itu bisa dilihat sebagai gejala.

Menurut Prof.Dr.Bambang Permono, dokter spesialis anak dari RS.Dr.Soetomo, Surabaya, orangtua mesti curiga dan waspada jika anak menunjukkan gejala-gejala 3P. "Ada tiga gejala utama, yakni anak tampak pucat, panas atau demam tanpa diketahui penyebabnya, serta ada perdarahan dengan pembesaran organ atau benjolan di getah bening," katanya disela acara peresmian rumah singgah pasien kanker anak Rumah Kita di Surabaya beberapa waktu lalu.

Perdarahan yang dialami anak bisa terjadi di gusi, hidung, atau bintik-bintik kemerahan di bawah kulit mirip dengan gejala demam berdarah. "Jika ada gejala-gejala itu hampir 80 persen adalah leukemia," katanya.

Untuk memastikannya perlu dilakukan pemeriksaan darah tepi untuk mengetahui jumlah haemoglobin, leukosit, dan trombosit. Selain itu perlu diperiksa sumsum tulang belakang.

Pesatnya dunia kedokteran dan pengobatan menjadikan usia harapan hidup pasien kanker lebih tinggi dibandingkan satu dasawarsa terakhir. Menurut Bambang, harapan hidup pasien leukemia kini sudah lebih dari 50 persen.

"Kalau ditemukan sejak dini, harapan kesembuhannya sangat besar. Ada pasien saya yang didiagnosa leukemia sejak usia 4 tahun bisa sembuh dan sekarang sudah dewasa dan memiliki dua anak," katanya.

Tinggi rendahnya harapan hidup pasien, jelas Bambang, ditentukan oleh dua hal, penemuan kanker pada stadium awal serta kepatuhan pasien dalam pengobatan. Pengobatan utama leukemia adalah kemoterapi.

Sayangnya bagi pasien yang tidak mampu, pengobatan seringkali terputus. Bahkan meski biaya pengobatan sudah ditanggung pemerintah, namun banyak dari mereka yang tak punya biaya untuk bolak-balik ke rumah sakit. Padahal, pengobatan leukimia memakan waktu berbulan-bulan bahkan tahunan.

Meningkat
Di Surabaya, berdasarkan data dari RS Dr.Soetomo, jumlah penderita kanker pada anak dalam 5 tahun terakhir makin meningkat. Pada tahun 2010 ada 689 anak terdeteksi kanker, sedangkan di tahun 2011 tercatat ada 744 pasien kanker anak baru.

Penyebab dari semua kanker tersebut masih belum diketahui. Menurut Bambang, hal tersebut mungkin berkaitan dengan peningkatan industri sehingga pencemaran pun meningkat.


Dia adalah Yu Yuan Gadis Kecil Penderita Leukemia Berhati Malaikat berasal dari China ia rela melepaskan semuanya dan menyumbangkan untuk anak-anak lain yang masih punya harapan serta masa depan. read more http://forum.kompas.com/internasional/46142-yu-yuan-gadis-kecil-penderita-leukemia-berhati-malaikat.html





Dia adalah Stiliyan Petrov itu mantan pemain aston Villa yg pensiun dini karena penyakit Leukimia, nyang juga merupakan survivor leukemia



Dia adalah Josephine Katherine L anak 14 tahun yang masih duduk di bangku SMP asal Indonesia yang telah meninggal pada tahun 2011 read more http://2jkl.wordpress.com/



Dia adalah gadis kecil berusia 5th yang berasal dari Korea


Dia bernama Alan Vanderline yang merupakan boy Belieber dari Brazil yg meninggal krn Leukimia/Kanker 5
bln lalu tgl 20 April 2013.


Dan yang paling terbaru beliau adalah sutradara muda yang sangat inspiratif di indonesia Iqbal Rais yang meninggal pada hari tgl 22 sepetember 2013 pada usia 29th.




Itulah beberapa informasi yang dapat saya bagikan kepada kalian, semoga bermanfaat, read more about leukemia kunjungi http://penyebableukemia.com/



Jumat, 02 Agustus 2013

DIET MISCONCEPTION

DIET MISCONCEPTION

Nutritionist working in the field for over 15 years, doesn’t believe in "diets" nor. "Diet" should be your daily eating habits, not something that restricts calories and vital nutrients to make you lose weight.  OR, more likely, make you think you are losing weight. With that being said, it is important to understand most people that go on a "diet" and lose weight, end up gaining back lost weight plus an additional 10-15% within the first year. This wreaks havoc on our bodies and overall, the efficiencies of our metabolism. Bellows are "diet" misconceptions people have when trying to lose weight.  These misconceptions have negative effects on the body - both short term and long term.
Restriction of calories - "diets" that have you restrict calories are not maintainable.  Meaning, over time you cannot maintain such low calories making this approach very unrealistic.  When you start eating again, your weight goes up. Your body needs calories to function - this is called your resting metabolic rate.  These are the calories your body needs to stay alive.  Even if you don't do anything all day long, your body needs a certain amount of calories just to keep you alive.
Carbs are bad - carbohydrates are not bad for the body.  Just like anything else, an abundance of carbohydrates will lead to weight gain.  Carbohydrates provide the body with 4 calories per gram.  There are different types of carbohydrates - Simple carbohydrates, which are fast energy carbohydrates and Complex carbohydrates, usually higher in fiber and take longer to digest.  Both are necessary parts of a healthy "diet."
All fats are bad - fats are one of the 3 classes of nutrients that your body needs on a daily basis. Fat provides the body with 9 calories per gram and is therefore a more concentrated source of calories.  When choosing foods with "fat" in them, it is important to make healthy fat choices. You want to choose fats that are heart healthy and do not have negative health effects. Good fats you want to include in your daily "diet" include: olive oil, salmon, avocados, nuts and seeds, peanut butter-- just to name a few.
Water and/or fluid intake is essential for weight loss.  If you are drinking a lot of sodas or other types of liquids that are adding additional calories to your daily "diet," it is important to reduce and/or eliminate these. Sodas and other high calorie drinks (including smoothies, coffees with additives, etc) can add hundreds of what we call "dead" or "empty" calories to your daily intake.  These drinks do not give your body the necessary nutrients. You should aim to drink half your body weight in ounces - and water is the recommended beverage of choice.  However, if you are unable to drink that much water, any type of non-caloric fluids will suffice.
Good nutrition takes time.  If you want to make changes, take small "baby" steps every day to incorporate new changes into your eating habits and patterns. Over time, these small steps can reap huge rewards.


http://www.fitday.com/fitness-articles/fitness/4-common-diet-misconceptions---debunked.html#b

Sabtu, 08 Juni 2013

ANALISIS TELAAH KURIKULUM NEGARA BERKEMBANG (INDIA)



ANALISIS TELAAH KURIKULUM NEGARA BERKEMBANG (INDIA)
 [Disusun guna memenuhi tugas mata kuliah Pengembangan dan Telaah Kurikulum Sekolah (PTKS)]







Oleh :
Wontin Muyassaroh       110210153005





PROGRAM STUDI PENDIDIKAN BIOLOGI
JURUSAN PENDIDIKAN MATEMATIKA DAN IPA
FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN
UNIVERSITAS JEMBER
2013


PENDIDIKAN DI INDIA
India memiliki luas daerah 3.287.263 km persegi. Negara ini tercatat sebagai negara terluas ketujuh dan terpadat kedua di dunia setelah Cina. Mayoritas penduduknya beragama Hindu (83%). Adapun yang beragama Islam berjumlah 12%, Kristen, Siktis dan lainnya.
Ekonomi India mengandalkan sektor pertanian dan peternakan mencapai 34% dari pendapatan negara. Sektor pertanian sendiri mampu menyerap 69% tenaga kerja yang ada. Umumnya ekonomi India dipengaruhi oleh perubahan land reform, revolusi hijau, industrialisasi dan migrasi. Industri perfilm-an India tergolong besar dan sanggup merekrut banyak tenaga kerja. Bollywood merupakan contoh kongkritnya, dengan model dan alur cerita dalam film yang diiringi dengan nyanyian dan tarian tersebut selain mendatangkan profit juga melestarikan seni dan budaya lokal.
India merupakan salah satu kawasan Asia Selatan yang memiliki kemegahan kebudayaan yang megah di dunia yang menyaingi Cina dalam kesusasteraan, seni dan arsitektur. Perasaan nasionalis India mulai berkembang setelah timbul rasa bangga atas hasil-hasil kebudayaan mereka yang dipelajari dan kemudian dialih bahasakan oleh sarjana-sarjana asing ke dalam bahasa-bahasa barat.
Pada awal abad ke-19 kekayaan di belahan daratan India menarik pedagang bangsa Eropa yang suka bertualang. Di pertengahan abad ke-19 ketika India kehilangan kekuasaan dari tangan East India Company yang jatuh ke dalam kendali pemerintahan Inggris, merupakan kawasan kekuasaan kolonial yang paling kaya permata. Kolonialisme Inggris menguasai seluruh belahan benua itu.
Pendapatan per kapita India adalah US$ 200 per tahun. Dari sensus tahun 1987-1988 diketahui bahwa 30% penduduknya dibawah garis kemiskinan. Kesenjangan sosial cukup menjolok dalam hal ekonomi dan distribusi kesehatan. Bisa dimaklumi bahwa populasi penduduk yang sangat besar tersebut, disamping sebagai human capital juga merupakan beban negara. Terlebih bila diingat bahwa selama 150 tahun India dibawah penjajahan Inggris dan baru pada tahun 1947 mengalami kemerdekaan.
Perkembangan ilmu pengetahuan di bidang pertanian, nutrisi, obat-obatan dan industri oleh para pendidik India diakui harus memiliki hubungan dengan pendidikan dan modernisasi. Ilmu-ilmu sosial dan prilaku belum digunakan secara efektif dalam menyelesaikan persoalan dan hambatan yang dihadapi oleh masyarakat yang sedang berubah.
Segera setelah tahun 1947, Jawaharlal Nehru menyatakan bahwa seluruh dasar pendidikan mestilah diubah secara revolusioner. India merdeka mencoba untuk modernisasi secara tepat dengan menempatkan banyak sumber dan kepemimpinanya untuk diprioritaskan pada pelayanan pembangunan ekonomi, sistem pendidikan diizinkan berkembang tanpa kritik yang berarti. Pada tahun 1964, pemerintah mengangkat komisi pendidikan tingkat tinggi untuk memberi nasehat pada pemerintahan tentang pola pendidikan nasional di seluruh jenjang dan aspeknya. Laporan komisi pendidikan ini diterbitkan pada tahun 1996 dan merupakan analisis pertama tentang kondisi sistem pendidikan di india dalam hubungannya dengan tujuan pembangunan. Laporan itu sendiri bukanlah sebuah rencana atau badan hukum melainkan dirancang untuk melayani sebagai latar belakang bagi munculnya rencana dan peraturan baru.
1.     Tujuan Pendidikan
Tujuan pendidikan di India antara lain :
a.      untuk memberantas penyakit buta huruf
b.     meningkatkan mobilitas dan integrasi sosial
c.      untuk memajukan/ mengembangkan ilmu dan teknologi
d.     untuk meningkatkan perkembangan ekonomi
e.      untuk memperbaiki kondisi sosial masyarakat

2. Struktur dan Jenis Pendidikan
Komisi pendidikan India telah menetapkan kebijakan sistem pendidikan 10-2-3 tahun usia sekolah. Tingkat awal, 10 tahun sebagai pendidikan dasar dan terbagi dalam tiga jenjang yaitu primary (5 tahun), upper primary (3 tahun), dan secondary (2 tahun). Jenjang berikutnya ditempuh selama 2 tahun sebagai persiapan memasuki pendidikan tinggi. Untuk pendidikan kejuruan, jurusan teknik dan bisnis sudah mulai sejak secondary school.
Struktur pendidikan sekolah yang seragam tersebut yakni sistem 10-2-3 tahun, telah diadopsi oleh seluruh negara bagian dan teritori India (Union Territory,UT). Meskipun begitu, di lingkungan pemerintah dan teritori India masih dijumpai sejumlah kelas yang menyelenggarakan pendidikan dasar (primary), menengah (upper primary) dan atas (high and higher secondary school) yang membolehkan kelas I mengikuti ujian umum, pengajaran bahasa  inggris dan hindi, beberapa hari kerja dalam setahun, sesi akademik, masa liburan, struktur biaya, pendidikan wajib dan lain sebagainya. Bila dijabarkan dalam tingkat usia sekolah akan tampak sebagai berikut :
a.        tingkat dasar (primary stage) yang meliputi kelas I sampai V yakni 5 tahun masa belajar. Ini dilaksanakan di 20 negara bagian dan teritoria india
b.        pendidikan tingkat menengah (middle stage) meliputi kelas VI sampai VIII diselenggarakan di 18 negara bagian dan teritoria india.
c.        pendidikan menengah atas (secondary stage) meliputi kelas IX sampai X. Kelas ini diselenggarakan di 19 negara bagian dan teritoria india
d.        Pendidikan kejuruan, baik jurusan  teknik maupun bisnis merupakan pola pendidikan ghandi, yaitu pembentukan ”manusia berkepribadian yang utuh, kreatif dan produktif”. Pada tahun 1960 kemajuan minat siswa pada pendidikan kejuruan sangat kecil. Hingga tahun 1992 siswa yang mengikuti pendidikan dalam bidang ini hanya 6%. Akan tetapi pada tahun 1995 terjadi lonjakan signifikan, yaitu sebesar 25% dari keseluruhan siswa yang mengikuti pendidikan tinggi mengambil pendidikan kejuruan ini.
Pendidikan nonformal dilaksanakan dengan dibentuknya lembaga pendidikan yang bersifat terbuka bagi semua siswa, tidak terikat dengan proses pembelajaran secara langsung dan beban biaya yang tinggi.

3. Manajemen Pendidikan
1.        Otorita
Sistem pendidikannya dipengaruhi oleh Mahatma Ghandi yang memiliki gagasan untuk membentuk ”kepribadian yang utuh, kreatif dan produktif”. Departemen yang menangani masalah pendidikan adalah Departemen Pendidikan dan Kesejahteraan (1966)
Pada tahun 1985, pemerintah memutuskan bahwa kebijakan pendidikan diambil berdasarkan ketentuan parlemen federal, sedangkan pemerintah hanya bertindak sebagai pelaksana. Ide ini muncul berdasarkan usul dari Departemen Pengembangan SDM.
Pada tahun 1990, India membentuk komite modifikasi kecil yang bekerja selama 2 tahun untuk merevisi program jangka panjang dalam bidang pendidikan.
2.        Pendanaan
Sejak tahun 1976, pemerintahan pusat telah menetapkan bertanggungjawab atas pembiayaan dan pengaturan standar pendidikan atas sampai menengah dan mengadakan koordinasi dengan program pendidikan tinggi.
3.        Kurikulum dan Metodologi Pengajaran
Struktur dan kurikulum pendidikan di India secara esensial dipengaruhi oleh sistem pendidikan Inggris karena latar belakang penjajahannya. Namun setelah merdeka, upaya pendidikan ditekankan pada ekspansi yang cepat dibandingkan dengan reformasi menyeluruh. Maka konstitusi yang berlaku pada tahun 1950 selanjutnya menegaskan prinsip bahwa pendidikan merupakan penyampaian materi dan oleh karenanya berada dibawah kebijakan pemerintah sedangkan tugas menteri pendidikannya adalah membantu pemerintah melalui penyediaan bimbingan dan dana. Pasal dalam konstitusi India menyatakan perlindungan hak bagi lembaga swasta untuk menyelenggarakan pendidikan dan menerima bantuan dari pemerintah serta menyediakan standar tertentu yang harus dipenuhi oleh lembaga tersebut.
Jadi masalah pendidikan pada dasarnya adalah tanggung jawab pemerintah. Kesatuan menteri pendidikan mencermati hal itu dengan melakukan koordinasi semua standar yang berlaku dalam pendidikan tinggi (melalui badan penyandang dana dan komisi beasiswa universitas) dan melakukan promosi bagi kegiatan penelitian serta pendidikan teknik dan ilmiah. Selanjutnya, kementrian ini mengatur universitas Aligarth, Banaras, Delhi dan Visvabharati (juga universitas lainnya) karena pihak parlemen menyatakan hal tersebut. Telah menjadi kepentingan nasional. Perencanaan dan koordinasi pendidikan diimplementasikan melalui kebijakan umum yang telah diletakkan oleh badan penasehat urusan pendidikan.
Kurikulum dan standar sekolah dasar (primary school) mencakup pelajaran membaca, menulis dan mengeja bahasa daerah, sejarah dan kebudayaan india, geografi, sastra, sains dan kesehatan. Di sekolah menengah (secondary school) juga menerima pelajaran sains dan matematika bahkan juga beberapa sekolah mengganti kajian ilmu-ilmu sosial dengan sejarah dan geografi serta sedikit sekolah menengah atas yang memiliki banyak tujuan menawarkan jenis pelatihan manual dan ilmu kerumahtanggaan (home sciences). Bahasa hindi diajarkan (meskipun tidak selalu diberikan kecuali India bagain selatan) di seluruh sekolah menengah atas. Bahasa Inggris justru diberikan bahkan kadang kala diperlukan bagi sekolah menengah atas (upper secondary school).
Bidang spesialisasi di jenjang pendidikan tinggi terkait dengan disiplin ilmu tradisional seperti sejarah, sastra inggris dan ilmu politik. Ketika seorang mahasiswa telah memilih jurusan tertentu, ia tidak dapat mengubah spesialisasinya. Beberapa universitas telah memulai memberikan program studi umum atas dasar eksperimen. Mahasiswa yang cerdas cenderung masuk ke jurusan fisika, kimia, teknik atau kedokteran.
Metode pendidikan masih menekankan pada peranan hafalan tetapi ada beberapa jurusan di universitas yang mendorong dilakukannya metode penelitian (inquiri). Komisi beasiswa universitas telah mendirikan berbagai pusat studi lanjutan di berbagai universitas. Dari subsidi pusat-pusat inilah kemajuan riset dan pelatihan dikembangkan.
4.    Perbedaan sistem pendidikan di Indonesia dengan di India

Pendidikan di India
Struktur dan kurikulum pendidikan di India secara esensial dipengaruhi oleh sistem pendidikan Inggris karena latar belakang penjajahannya. Namun setelah merdeka, upaya pendidikan ditekankan pada ekspansi yang cepat dibandingkan dengan reformasi menyeluruh. Maka konstitusi yang berlaku pada tahun 1950 selanjutnya menegaskan prinsip bahwa pendidikan merupakan penyampaian materi dan oleh karenanya berada dibawah kebijakan pemerintah sedangkan tugas menteri pendidikannya adalah membantu pemerintah melalui penyediaan bimbingan dan dana. Pasal dalam konstitusi India menyatakan perlindungan hak bagi lembaga swasta untuk menyelenggarakan pendidikan dan menerima bantuan dari pemerintah serta menyediakan standar tertentu yang harus dipenuhi oleh lembaga tersebut.
Dalam pergaulan dunia internasional, negara ini jauh lebih diuntungkan daripada Indonesia. Ini karena, dalam keseharian mereka lebih banyak menggunakan bahasa Inggris, setelah bahasa Hindi. Maka tidak heran kalau perguruan tinggi terkenal di Amerika Serikat selalu dipadati oleh mahasiswa-mahasiswa asing dari India, selama beberapa puluh tahun, seberlum akhirnya didominasi oleh Cina (sumber VoA).
Tidak hanya pendidikan gratis ataupun murah, India tidak diragukan lagi reputasinya dalam mengelola pendidikan tinggi di bidang sains, teknologi, manajemen, dan kedokteran. Keberhasilannya di bidang ini telah diakui dunia internasional. Di bidang teknik dan teknologi informasi, India adalah jagonya. Perusahaan raksasa perangkat lunak (Microsoft) banyak memperkerjakan ahli perangkat lunak lulusan India.
Penampilan fisik sederhana, jamak dijumpai di tempat-tempat pemerintahan bahkan di kampus-kampus India. Tapi, akses ilmunya berlimpah. Perpustakaan lengkap dengan berbagai koleksi buku dan jurnal terbaru, komputer terkoneksi internet dapat diakses gratis oleh mahasiswa. Pendeknya, pendidikan di India lebih mementingkan isi daripada kulitnya. Meski gedung-gedungnya kusam, tapi hampir seluruh dosen yang mengajar di kampusnya bergelar doktor. Lulusan yang mereka hasilkan pun berkualifikasi hebat.
Pendidikan Indonesia:
Berbicara tentang pendidikan tidak akan terlepas dari kegiatan belajar mengajar yang berlangsung di sekolah. Kegiatan belajar mengajar tidak dapat terlepas dari kurikulum yang sedang berlaku saat itu. Kurikulum merupakan salah satu hal yang cukup vital bagi dunia pendidikan. Sejak Indonesia merdeka, kurikulum yang ada di Indonesia telah mengalami perubahan beberapa kali. Perubahan-perubahan yang terjadi tersebut dimaksudkan untuk membuat sistem pendidikan di Indonesia semakin membaik Berikut ini adalah perjalanan kurikulum di Indonesia (Soekisno, 2007).
Kurikulum 1952
Pada tahun 1952 kurikulum di Indonesia mengalami penyempurnaan. Pada tahun 1952 ini diberi nama Rentjana Pelajaran Terurai 1952. Kurikulum ini sudah mengarah pada suatu sistem pendidikan nasional. Yang paling menonjol dan sekaligus ciri dari kurikulum 1952 ini bahwa setiap rencana pelajaran harus memperhatikan isi pelajaran yang dihubungkan dengan kehidupan sehari-hari.
Kurikulum1964
Menjelang tahun 1964, pemerintah kembali menyempurnakan sistem kurikulum di Indonesia. Kali ini diberi nama Rentjana Pendidikan 1964. Pokok-pokok pikiran kurikulum 1964 yang menjadi ciri dari kurikulum ini adalah bahwa pemerintah mempunyai keinginan agar rakyat mendapat pengetahuan akademik untuk pembekalan pada jenjang SD, sehingga pembelajaran dipusatkan pada program Pancawardhana (Hamalik, 2004), yaitu pengembangan moral, kecerdasan, emosional/artistik, keprigelan, dan jasmani.
Kurikulum 1968
Kurikulum 1968 merupakan pembaharuan dari Kurikulum 1964, yaitu dilakukannya perubahan struktur kurikulum pendidikan dari Pancawardhana menjadi pembinaan jiwa pancasila, pengetahuan dasar, dan kecakapan khusus. Kurikulum 1968 merupakan perwujudan dari perubahan orientasi pada pelaksanaan UUD 1945 secara murni dan konsekuen.
Kurikulum 1975
Kurikulum 1975 sebagai pengganti kurikulum 1968 menggunakan pendekatan-pendekatan di antaranya sebagai berikut. Berorientasi pada tujuan Menganut pendekatan integrative dalam arti bahwa setiap pelajaran memiliki arti dan peranan yang menunjang kepada tercapainya tujuan-tujuan yang lebih integratif.
Kurikulum 1984
Kurikulum 1984 tampil sebagai perbaikan atau revisi terhadap kurikulum 1975. Berorientasi kepada tujuan instruksional, Didasari oleh pandangan bahwa pemberian pengalaman belajar kepada siswa dalam waktu belajar yang sangat terbatas di sekolah harus benar-benar fungsional dan efektif. Oleh karena itu, sebelum memilih atau menentukan bahan ajar, yang pertama harus dirumuskan adalah tujuan apa yang harus dicapai siswa.
Kurikulum 1994
Kurikulum 1994 dibuat sebagai penyempurnaan kurikulum 1984 dan dilaksanakan sesuai dengan Undang-Undang no. 2 tahun 1989 tentang Sistem Pendidikan Nasional. Hal ini berdampak pada sistem pembagian waktu pelajaran, yaitu dengan mengubah dari sistem semester ke sistem caturwulan. Dengan sistem caturwulan yang pembagiannya dalam satu tahun menjadi tiga tahap diharapkan dapat memberi kesempatan bagi siswa untuk dapat menerima materi pelajaran cukup banyak.
Kurikulum Berbasis Kompetensi – Versi Tahun 2002 dan 2004.
Kurikulum 1994 perlu disempurnakan lagai sebagai respon terhadap perubahan struktural dalam pemerintahan dari sentralistik menjadi desentralistik sebagai konsekuensi logis dilaksanakannya UU No. 22 dan 25 tahun 1999 tentang Otonomi Daerah. Kurikukum yang dikembangkan saat itu diberi nama Kurikulum Berbasis Kompetensi. Pendidikan berbasis kompetensi menitikberatkan pada pengembangan kemampuan untuk melakukan (kompetensi) tugas-tugas tertentu sesuai dengan standar performance yang telah ditetapkan, Sejalan dengan visi pendidikan yang mengarahkan pada dua pengembangan, yaitu untuk memenuhi kebutuhan masa kini dan kebutuhan masa datang, maka pendidikan di sekolah dititipi seperangkat misi dalam bentuk paket-paket kompetensi.
Kurikulum Tingkat Satuan Pendidikan (KTSP)
Lebih kepada mengimplementasikan regulasi yang ada, yaitu PP No. 19/2005. Akan tetapi, esensi isi dan arah pengembangan pembelajaran tetap masih bercirikan tercapainya paket-paket kompetensi (dan bukan pada tuntas tidaknya sebuah subject matter).

Tabel perbandingan pendidikan Indonesia dengan India

No
Aspek yang dibandingkan
Perbandingan Pendidikan
Indonesia
India
1
Usia
SD 6-12 tahun
SMP 12-15 tahun
SMA 15-18 tahun
SD 6-11 tahun
SMP 11-14 tahun
SMA 14-17 tahun
2
Masa Belajar (Wajib Belajar)
9 tahun
9 tahun
3
Tahun Akademik
Juli sampai dengan Juni
4
Pembiayaan pendidikan
Sekolah Negeri dibiayai oleh pemerintah
Sekolah Swasta hanya mendapat subsidi
Sekolah Negeri dibiayai oleh pemerintah
Sekolah Swasta dibiayai oleh yayasan
5
Waktu belajar
Pada Umumnya Hari senin – Sabtu
Pada umumnya jam belajar per hari sebanyak 6 jam.
6
Kurikullum Mata Pelajaran
·         Pendidikan Agama
·         Pendidikan Kewarganegaraan
·         Bahasa Indonesia
·         Matematika
·         Ilmu Pengetahuan Alam
·         Ilmu Pengetahuan Sosial
·         Seni Budaya dan Keterampilan
·         Pendidikan Jasmani, Olahraga dan Kesehatan Muatan Lokal
·         Menulis dan membaca
·         Aritmatika
·         Teologi
·         Hukum
·         Astronomi
·         Meta Fisika dan Etika
·         Ilmu Kedokteran
·         Agama
7
Evaluasi
Ujian Nasional
 Ujian naik kelas berdasarkan nilai harian, sikap, ujian semester
 Soal UN pilihan ganda
Ujian dilaksanakan diakhir pembelajaran tanpa memperhatikan nilai harian, tugas dan kehadiran.
Ujian berupa esay.
8
Tujuan Pendidikan
Tertuang dalam bentuk TIU yang terdapat dalam silabus dari BSNP dan untuk TIK dapat dikembangkan oleh Guru.
Mengenal semua benda dan dunia disekelilingnya. Orang India tidak
menguasai dunia , melainkan untuk
berteman dengan dunia.
9
Program Pemerintah
Bebas buta aksara
Bebas buta aksara khususnya pada perempuan
10
Ekstrakurikuler
Pramuka
Seni budaya dan tari-tarian.
11
Anggaran Pendidikan
20 % dari anggaran pemerintah.
12,7 % dari anggaran pemerintah.










DAFTAR PUSTAKA

Hamalik, Oemar. Dasar-Dasar Pengembangan Kurikulum. Remaja Rosda karya.
2006: Bandung.


Machfudh, ahmed. 2009. Sekolas Model Pendidikan di India.

http://www.pendidikanislam.net/index.php/untuk-guru-a-dosen/38
umum/112-sekilas-model-pendidikan-di-amerika-serikat-2. [Diakses pada 18 Mei 2013]

Mulyasa, Enco. 2006. Kurikulum Tingkat Satuan Pendidikan. Bandung: Rosda.



Rabu, 08 Mei 2013

Microscope and Staining





PAPER OF MICROBIOLOGY
“Microscope and Staining”






By :

1.      Nur Meili Zakiyah                               (110210153004)
2.      Wontin Muyassaroh                            (110210153005)







BIOLOGY EDUCATION STUDY PROGRAME
MATHEMATIC AND SCIENCE DEPARTMENT
TEACHER TRAINING AND EDUCATION FACULTY
JEMBER UNIVERSITY
2013




PRINCIPLES OF MICROSCOPY
The microscope is one of the important tools in science laboratory activities, especially biology. The microscope is a tool that enables us to observe objects that are very small (microscopic). This helps solve the human problems of small organisms. To know it is to know microscopy microscope parts, kinds of microscopes, use and maintenance.
1. Microscope components
a. foot
Sustain and strengthen the functioning leg position microscope. In the attached foot arm with a kind of hinge, the simple microscope (model student).
b. arm 2
With the hinge between the legs and arms, the arm can be enforced or recline. Arm also used to hold the microscope when moving the microscope.
c. Mirror.
The mirror has two sides, the flat mirror and the concave mirror, serves to reflect light and light sources. Flat mirror is used when the light source is quite bright, and the concave mirror is used when the light source is less. Mirror can be detached and replaced with a light source of the lamp. In the new model microscope, it no longer fitted mirror, because there is a light source mounted on the bottom (foot).
d. condenser
The condenser is composed of the combined lens serves to collect light.
f. table preparations
Preparations is a laid table objects (preparations) to be seen. Objects placed on the table with the clamped by the clamp. Section of the table there is a sleeve for dilewat rays. In certain types of microscopes, the position of the table can not be raised or lowered. In some microscopes, especially the latest models, hair preparations can be hung upside down.
g. Tube.
At the top of the tube attached to the ocular lens, with a particular magnification (15X,
10X, and 15X). Bottom of the tube there is a device called a revolver. In these revolvers are the objective lens.
h. objective lens
The objective lens work in the formation of the first shadow. these lenses
determine the structure and the trace will appear on the final image. Another important feature is the objective lens by the magnification of an object shadow enlarge assortment according to the model and the manufacturer, for example, 10X, 40X, and 100X and have value Apertura (NA). Apertura is a measure of the value of separating an objective lens that will determine the split specimen, so as to demonstrate the structure of adjacent microscopic as two separate objects.
i. ocular lens
Microscope lens that sits at the top end of the tube, adjacent to the eye of the observer. This lens serves to magnify the image produced by the objective lens. Magnification images forming ranges between 4-25 times.
j. Regulatory Rough and Smooth
This component is located on the arm and serves to adjust the position of the objective lens to the object to be seen. In the microscope with a tube straight / straight, coarse and fine control for the dip tube once objective  lens. In the microscope with oblique tube, coarse and fine control to turn the tide table preparations.

Procedure Principle
Total magnification is obtained by multiplying the objective magnification eyepiece with magnification. For example, the total magnification is obtained from the objective and eyepiece 40 times 10 times is 40 x 10 = 400 times. Magnification of 100 times while using the objective, condenser iris diaphragm should be used in the fully open state, because objective with a hight magnification need more light. Objective magnification of 100 times also have to use oil immersion. It aims to prevent the loss of light caused by the differences in refraction (refractive) between glass and air. The refractive index of air 1, while the glass 1:56 and immersion oil refractive index of glass is equal to 1.56. Note the picture is to show the process of diffraction.
Objective lens serves for the formation of the first shadow and determine the structure and microscopic section will look at the final image to enlarge and develop the shadow object so that it can have a value of "Apertura" which is a measure of separating an objective lens that will determine the split specimen, so as to demonstrate adjacent microscopic structure as two separate objects.
Ocular lens, lens microscope is located at the top end of the tube adjacent to the eye of the observer, and serves to magnify the image produced by the objective lens ranges from 4 to 25 times.
Condenser lens, is a lens that serves to support the creation of light on the object to be seen so that the appropriate arrangements will be obtained maximal separation power. If the separation is less maximum power then the two objects will appear to be one and zoom in be less than optimal.

LIGHT MICROSCOPE
A light microscope can magnify our vision to be 1,000 times. Thus lead to an enlarged diameter of 0.2 micrometers objects we can see. Light microscope has two types, namely Ojective and eyepiece lenses, the system works in a way assisted penetrating reflections observed objects and shadows can enlarge objects up to 1000x.

Although it's been 300 years passed since the microscope was found, to date remains the standard light microscope based on optical principles. Microscopes are you using now is as good as that used by Schleiden, Schwann, and Virchow, the inventor of the cell theory in the mid-19th century. The microscope is much better than the first microscope used by Robert Hooke, who first used the term cell.

Types of light microscopes
The bright field microscope is best known to students and is most likely to be found in a classroom. Better equipped classrooms and labs may have dark field and/or phase contrast optics. Differential interference contrast, Nomarski, Hoffman modulation contrast and variations produce considerable depth of resolution and a three dimensional effect. Fluorescence and confocal microscopes are specialized instruments, used for research, clinical, and industrial applications.
Other than the compound microscope, a simpler instrument for low magnification use may also be found in the laboratory. The stereo microscope, or dissecting microscope usually has a binocular eyepiece tube, a long working distance, and a range of magnifications typically from 5x to 35 or 40x. Some instruments supply lenses for higher magnifications, but there is no improvement in resolution. Such "false magnification" is rarely worth the expense.
This type of microscope is composed of an objective lens, an ocular lens, a stage, a lightsource, a condenser, a tube, an arm to support the tube, and a focusing system. The specimen is set on the stage, a platform usually equipped with metal arms to hold the specimen or slide in place. The light bulb is situated beneath the stage so that the light shines up through the specimen. The tube focuses down on the stage so that the ocular lens, or eyepiece, is at the far end of the tube and the objective lens is at the end closer to the specimen.

How to Use Light Microscope
Before doing lab work using light microscopy then consider the following steps:
1.      Put the microscope on the table by holding the arm microscope so that the microscope is directly in front of the user.
2.      Rotate the revolver so weak objective lens with a magnification in the position of the shaft with marked ocular lens click on the revolver


3.      Set up a mirror and diaphragm to see the power of incoming light, until of the ocular lens looks bright round (field of view).
4.      Place the preparation on the table right thing at the hole and clamp with clamp preparations object / object.
5.      Set the focus to clarify the picture by rotating the object rough player, while views of the ocular lens. To sharpen the players rotate fine.


6.      If the shadow of an object is found, replace it to enlarge the size of the objective lens 10x, 40x or 100x, by turning a revolver to a click.

7.      When finished using, clean the microscope and store in a place that is not damp.

Rules For Use Of The Microscope
1.      Always carry the microscope in a straight upright position with one hand around the arm and the other hand under the base.  The eyepieces are not attached and will fall out if the microscope is carried at an angle or upside down.
2.      Check out the microscope to make sure all the lenses are clean and the mechanical parts are in working order.  Report any malfunction to the instructor so that it may be remedied.
3.      Keep the microscope clean.  When anything is spilled or otherwise gets on the microscope, clean it up immediately.
4.      When using the microscope start with the low power lens and work up to the desired magnification.  These microscopes are parfocal, which means that all powers should be in focus when the turret is rotated.  
5.      Never move the stage upwards with the coarse adjustment while viewing through the eyepieces.  Get the lens close to the slide while viewing from the side to make sure that they never touch.  Then move the stage downward with the coarse adjustment while viewing through the lense.  This will prevent the possibility of ramming the lens into the slide, thereby ruining a slide you have just made and, quite possibly, damaging the lens.
6.      Moist, living or preserved materials must be observed through a coverslip.  This protects the lens as well as tends to make the object under view optically flat.  Be sure to maintain a safe distance between the coverslip and the objective lenses.
7.      Clean the lenses with lens paper only.  Don’t clean the lenses with handkerchiefs, facial tissues, paper towels, etc.
8.      If you cannot obtain clear focus or good lighting, or if your microscope seems not to be working properly, immediately call your instructor. He/she can either assist you or see that the microscope is repaired.
9.      Return your scope to the cabinet with light cord wrapped around its base and with the lowest power objective lens in position.


ELECTRON MICROSCOPE
Electron microscopy is basically utilized to study structures which are unvisible to the naked eye, or are too small to be well revealed with a light microscope. Electron have bigger resolution than light electron. Light can achieve 200 nm only, while electron microscope can achieve until 0,1 – 0,2 nm. Besides that, with use electron we can get some reflection that has benefit to characterizing. If electron hit an object, from the object will rise 2 reflections, that are elastic reflection and non-elastic reflection. The picture show below
Much like the traditional Scanning Electron Microscope, the Field Emission Scanning Electron Microscope uses electrons to illuminate a sample, instead of visible light as is used in optical microscopy.
To see objects smaller than 200 nanometers, needed a microscope with a shorter wavelength. From this idea, in 1932 electron microscope was born. As the name suggests, electron microscopes use beams of electrons that shorter wavelengths of light. Therefore, the electron microscope has a magnification ability of the object (resolution) is higher than the optical microscope. Actually, the function of the object magnification, electron microscopy also use the lens, but not from the type of glass, as in an optical microscope, but of the magnet. The nature of the magnetic field can control and influence through which electrons, so that it can function replaces the lens on a microscope optical properties. Another particularity of this electron microscope observations of the object is under vacuum (vacuum). This is done because the electron beam is inhibited when mashing the flow of molecules that exist in normal air. By making observations of objects unconditioned space vacuum, electron-molecule collisions can be avoided.


PARTS OF ELECTRON MICROSCOPE
  1. Illumination Source
A tungsten filament is heated to 2,700OC, in a vacuum to produce a beam of electrons (LM uses photons). Electrons behave in the same manner as light when in a vacuum. The entire microscope column is under vacuum otherwise the electrons would collide with air molecules and be absorbed.
  1. Condenser Lens
Makes the light source into a parallel beam and focuses it onto to the specimen (TEM has 2 or 3 condenser lenses) All TEM lenses are electro magnetic lenses whereas LM has glass lenses. Electric and magnetic fields have the same effect on electrons as glass lenses and mirrors have on visible light.
  1. Objective Lens
Strong lens. Focuses. 1st magnifying lens. Brings electrons which have passed through the specimen to focus.
  1. Specimen Stage
Specimen Injector Rod inserts the specimen inside the Objective Lens. Although the specimen is thin there is information at various depths and these can be viewed by tilting the specimen using a goniometer.
  1. Intermediate Lens
Magnifies the image.
  1. Prejector Lens
Projects the image onto yellow/green phosphorescent screen.

There are some type of Electron microscope based on the function, that are :
a.      Transmission electron microscope (TEM)
The original form of electron microscope, the transmission electron microscope (TEM) uses a high voltage electron beam to create an image. The electron beam is produced by an electron gun, commonly fitted with a tungsten filament cathode as the electron source. The electron beam is accelerated by an anode typically at +100 keV (40 to 400 keV) with respect to the cathode, focused by electrostatic and electromagnetic lenses, and transmitted through the specimen that is in part transparent to electrons and in part scatters them out of the beam. When it emerges from the specimen, the electron beam carries information about the structure of the specimen that is magnified by the objective lens system of the microscope. The spatial variation in this information (the "image") may be viewed by projecting the magnified electron image onto a fluorescent viewing screen coated with a phosphor or scintillator material such as zinc sulfide. Alternatively, the image can be photographically recorded by exposing a photographic film or plate directly to the electron beam, or a high-resolution phosphor may be coupled by means of a lens optical system or a fibre optic light-guide to the sensor of a CCD (charge-coupled device) camera. The image detected by the CCD may be displayed on a monitor or computer.
Resolution of the TEM is limited primarily by spherical aberration, but a new generation of aberration correctors have been able to partially overcome spherical aberration to increase resolution. Hardware correction of spherical aberration for the high-resolution transmission electron microscopy (HRTEM) has allowed the production of images with resolution below 0.5 angstrom (50 picometres) and magnifications above 50 million times. The ability to determine the positions of atoms within materials has made the HRTEM an important tool for nano-technologies research and development.
An important mode of TEM utilization is electron diffraction. The advantages of electron diffraction over X-ray crystallography are that the specimen need not be a single crystal or even a polycrystalline powder, and also that the Fourier transform reconstruction of the object's magnified structure occurs physically and thus avoids the need for solving the phase problem faced by the X-ray crystallographers after obtaining their X-ray diffraction patterns of a single crystal or polycrystalline powder. The major disadvantage of the transmission electron microscope is the need for extremely thin sections of the specimens, typically about 100 nanometers. Biological specimens typically require to be chemically fixed, dehydrated and embedded in a polymer resin to stabilize them sufficiently to allow ultrathin sectioning. Sections of biological specimens, organic polymers and similar materials may require special `staining' with heavy atom labels in order to achieve the required image contrast.
In a TEM the object (for example a cluster of cells) is usually previously cut in very thin sections (ultrasection <100nm) and pre-treated with heavy metals which by preference bind ("stain") to certain characteristic structures, like membranes, proteins and DNA (see preparation TEM). Sometimes the objects (e.g. virussen or polymeric aggregates) are thin enough to be partly permeant to the electron beam. In such cases hardly any pretreatment is necessary. Once in the TEM the object is bombarded by a beam of electrons,the so-called primary electrons. In areas in the object where these electrons encounter atoms with a large (heavy) atomic nucleus (e.g. the nuclei of the heavy metals of the pretreatment), they rebound. Electrons are also repulsed (or absorbed) in areas where the material is relatively condense or thick. However, in regions where the material consists of lighter atoms or where the specimen is thinner or less concentrated, the electron are able to pass through. Eventually the traversing electrons (transmission) reach the scintillator plate at the base of the column of the microscope. The scintillator contains material (e.g. phosphor compounds) that can absorb the energy ot the strucking incoming electrons and convert it to light flashes. The contrasted image that is formed on this plate corresponds with the selective pattern of reflection or permission of electrons, depending on the local properties of the object. Thus, one can see for example where cytoskeletal elements and membranes are located because the corresponding area remain dark,whereas the cytosol around these structures appears as light (see example; G= Golgi, AF = Actin filaments, Mt = Mitochondrion). In practice the bombarding electrons are focussed to a bundle onto the object. The fine pattern of exiting electrons leaving the object is then greatly enlarged by electromagnetic lenses: a many times enlarged projection image is the result.
Transmission electron microscopes produce images by recording the electron beam after it has passed through a thin slice of specimen. The specimen is placed on a copper wire grid and subjected to an electron beam, normally generated by running high voltage across a tungsten filament. The electron beam travels through a condenser lens, strikes the specimen and continues through objective and projective lenses before being collected onto a phosphor screen. As with all forms of electron microscopy, the target specimen must be dehydrated and isolated in a vacuum to avoid water vapor contamination, which can cause unwanted electron scattering. TEMs produce the highest magnification of all electron microscopes.

1: Electron cannon in the upper part of the column. 2 Electro-magnetic lenses to direct and focus the electron beam inside the column. 3: Vacuum pumps system. 4: Opening to insert a grid with samples into the high-vacuum chamber for observation. 5: Operation panels (left for alignment; right for magnification and focussing; arrows for positioning the object inside the chamber). 6: Screen for menu and image display. 7: Water supply to cool the instrument.
b.      Scanning Transmission Electron Microscopy (STEM)
Is the result of development from Transmission Electron Microscopy (TEM). In STEM, electron will pierce to the specimen and similar with working principle of SEM. electron optics Focused directly on a tight angle with scanning the area where the object scanned from side to side and produce rows of dots that make up an image as generated by the CRT TV / monitor.
Scanning transmission electron microscopes, like traditional TEMs, pass an electron beam through a thin slice of specimen. Instead of focusing the electron beam after passing through the sample, a STEM focuses the beam beforehand and constructs the image through raster scanning. Scanning transmission electron microscopes are well suited for analytical mapping techniques such as electron energy loss spectroscopy and annular dark-field microscopy.
c.       Scanning Electron Microscopy (SEM)
Scanning Electron Microscopy (SEM) used to observe the details of the cell surface or other microscopic structures, and is able to display three-dimensional objects.
Formatting image of SEM is different with formatting image of TEM. In the SEM, the image is made based on the detection of new electrons (secondary electrons) or reflection electron that arise from the surface of the sample when the sample surface is scanned by an electron beam. Secondary electrons or reflection electron further that was detected then powered the signal, and then the amplitude is shown in shades of darkness on the screen CRT (cathode ray tube). In the CRT screenthe image that has been magnified object structure can be seen. In the process of operation, the SEM does not require a diluted sample, which can be used to view objects from three-dimensional viewpoint.
In SEM the object is bombarded by primary electrons from the source according to a scanning pattern. These strucking electrons cause the emission of secondary electrons (to some extend one could compare the effect with that of a pool balls, in which the striking balls pushes the receptive one away). In SEM an image of the surface of the object is made. The height and slope of the surface of the object in a particular area co-determines the number of generated secondary electrons per time unit and the velocity of those electrons. The secondary electrons are attracted by the Corona and strike the a scintillator disc. Like in the TEM, this disc contains sun=bstances which can convert the energy of the striking electrons into photons (light). The more secondary electrons reach the scintillator, the brighter the signal is at that point. This luminescence signal is further amplified by a photomultiplier tube and transduced to a video signal that is fed to a cathode ray tube in synchrony with the scan movement of the electron beam. Nowadays the analog image is converted to a monochromatic (gray shades) computer image that can be further digitally processed. The intensity pattern in the final image reflects the levels in the sample and looks like a shadow-cast view (see an Ambrosia pollen grain as an example).
In Cryo-SEM microscopes frozen material, e.g. cells, can be fractured in order to obtain a view of the surface of the structures inside the broken volume. In microscopes equipped with EDS (Energy Dispersed Spectroscopy) or EDAX (Energy-Dispersed Analysis of X-rays) detectors which collect the energy of directly reflected electrons (back scattered electrons) and X-ray, it is possible to map which lements are present in the outermost surface layer.

1: Electron cannon in the upper part of the column (here a so-called field-emission source). 2 Electro-magnetic lenses to direct and focus the electron beam inside the column. 3: Vacuum pumps system. 4: Opening to insert the object into the high-vacuum observation chamber in conventional SEM mode. 5: Operation panel with focus, alignment and magnification tools and a joystick for positioning of the sample. 6: Screen for menu and image display. 7: Cryo-unit to prepare (break, coat and sublimate) frozen material before insertion in the observation chamber in Cryo-SEM mode. 8: Electronics stored in cupboards under the desk. 9: Technicians Mieke Wolters-Arts and Geert-Jan Janssen discussing a view.
Scanning electron microscopes, along with transmission electron microscopes, are the most widely used. Unlike the TEMs, scanning electron microscopes produce images by collecting the secondary or inelastically scattered electrons that bounce off the surface of a specimen. The primary electron beam travels through several condenser lenses, scan coils and an objective lens before striking the surface of the specimen. The electron beam is scattered upon hitting the specimen and a secondary electron detector collects the scattered electrons. The electron data is then raster-scanned to produce surface images with considerable depth of field.




d.      Reflection Electron Microscope (REM),
REM is an electron microscope that has a similar way of working with the workings of TEM, but the detection system uses the reflection of electrons on the surface of the object. This technique is specifically used by combining it with the technique of reflection high-energy electron diffraction (Reflection High Energy Electron Diffraction) and release techniques Reflection high-energy spectrum (reflection high-energy loss spectrum - RHELS).
Reflection electron microscopes operate very similar to SEMs in terms of structure. REMs, however, collect the backscattered or elastically scattered electrons after the primary electron beam strikes the specimen surface. Reflection electron microscopes are most commonly coupled with spin-polarized low-energy electron microscopy to image the magnetic domain signature of specimen surfaces in computer circuitry construction.
As we all know that electron microscope have ability more than Light microscope. Besides that, there are some differences, that are:
Light Microscope:
Electron Microscope:
1.      The radiation source (source of illumination) is light,
2.      wavelength 400-700 nm.
3.      Lens is made of glass.
4.      Not affected by magnetic field.
5.      Maximum magnification 1500-2000 times.
6.      Resolving power 0.1-0.2 nm.
7.      Image is colored (natural color of object is seen), enable the viewer to watch living cells.
1.      Radiation source is electrons, focused by magnetic lenses.
2.      wavelength about 0.005nm.
3.      Lens is electromagnetic.
4.      Affected by magnetic field.
5.      Maximum magnification 1, 60,000 to 2, 50,000 times.
6.      Resolving power 200-300 nm.
7.      Image is black and white. image of the shadows cast by atoms of heavy metals used as stains; the living tissue is destroyed by the intense beam of electrons.

      


STAINING
Microorganisms that exist in nature has a morphology, structure and unique properties, as well as bacteria. Bacteria that live almost colorless and the contrast with water, in which bacterial cells are suspended. One way to observe the bacterial cell shape is so easy to identify with the method of painting or staining. It also serves to determine the nature of the physiological reactions that determine the bacterial cell wall through a series of painting.
Staining method was first discovered by Christian Gram in 1884. With this method, Bacteria can be grouped into two, that are: gram-positive and gram-negative bacteria that based on the reaction or the nature of the bacteria to the paint. Reaction Or the bachteria characteristic determined by the composition of the bacterial cell wall, so the staining of gram can’t doing in microorganism without cell wall like Mycoplasma sp. (Waluyo, 2004).
Success or failure of a coloring is determined by the timing of the color and culture of the colored age (age of culture that good is 24 hours). Commonly, dyes that used is salts that are built by the ions that have positive and negative charge ions which one of them is colored. The dye grouped into two, namely the acidic and bases dyes. If the ion that containing the color is a positive ion dye, so called dye bases. And if the color is ion-containing negative ions then dye called negative dye (Hadiutomo. 1990).
The dye used in coloring is base and acidic. In base dye, the part that role in cleaning color called chromosphores and have a positive charge. Conversely, the acid dyes instrumental sections provide dyes having negatively charge dye base more widely used because of the negative charge is found on the walls of cells, and cell membrane staining process cytoplasm positive charge on the dye bases will be associated with a negative charge inside the cell, thus microorganisms more clearly visible (Dwidjoseputro.1998).
1.      simple staining
Using one kind of dye (methylene blue / water fukhsin) the goal is only to see the shape of the cell. Simple Staining is the most commonly used. Various morphological types of bacteria (cocci, bacilli, spirilum, etc.) can be distinguished using a simple Staining, the bacterial cells staining only use one kind of dye. Most bacteria react easily with simple dyes because cytoplasm is basophilic (this will base) while the dyes were used to simple staining is generally alkaline (chromophoric components is positively charged).
The dye used consists of only one substance that dissolve in a solvent. Simple staining is a quick way to see the morphology of the bacteria in general. Some examples of commonly used dye is methylene blue (30-60 seconds), crystal violet (10 seconds) and fukhsin-carbolic (5 seconds).
In simple staining used only one kind of dye to enhance the contrast between microorganisms and their surroundings. Commonly, this staining procedure using alkaline dyes such as crystal violet, methylene blue, basic fuchsin carbolic acid, safranin or green malakit. Sometimes negative dyes used for coloring is simple: acid dyes are frequently used nigrosin and red kongo (Lay.1994).
Simple Staining procedure is easy and fast, so the coloring is often used to look at the shape, size and arrangement of the bacteria. In the bacteria known some shape : round (coccus), rod (bacillus), and spiral. With a simple staining also can be seen arrangement of bacteria. In coccus can be seen coloring like chain (stertococcus), grapes (stafilococcus), pairs (diplococcus), cube shape consisting of 4 or 8 (saranae) (Lay.1994).
Some microbes difficult colored with dyes that are alkaline, but easily visible with negative staining, the method of microbial mixed with Indian ink or nigrosin, then rubbed on glass object. Color substance will not stain the bacteria, but will color the surrounding environment of bachteria. With microbes microscope will appear colorless with black background (Lay.1994).

2.      Differential staining divided into gram staining and acid-fast stain
Staining of bacteria that use more than one such dye staining, like acid-fast and gram staining. Explanation as follows:
a.      Gram staining
Gram method or Gram staining is a method of differentiating species of bacterial into two large groups, the gram-positive and gram-negative, based on the chemical and physical properties of their cell walls. The method is named after its discoverer, Danish scientist Hans Christian Gram (1853-1938) who developed the technique in 1884 to distinguish between pneumococcal and Klebsiella pneumoniae bacteria.
With the Gram staining method, the bacteria can be grouped into two, namely Gram positive and Gram negative bacteria based on the reaction or the nature of the paint. Or the nature of the reaction is determined by the composition of the bacterial cell wall. Therefore, Gram could not be done on microorganisms that do not have cell walls of bacteria such as Mycoplasma sp. Examples belonging acid resistant bacteria, which is of the genus Mycobacterium and some species of the genus Nocardia. Bacteria of both genera are known have a large number of substances lipodial (fat) in the cell wall, causing the cell wall is relatively impermeable to substances common color that bacterial cells are not stained by the usual staining methods, such as simple or Gram staining.
In gram staining, reagents that required are :
         The main dye (crystal violet)
         Mordant (iodine solution) is a compound which is used to intensify the main color.
         Washer / laxative dyes (alcohol / acetone) the organic solvents used to fade main dye.
         The second dye / paint cover (safranin) is used to color back the cells that has lost the main cat after treatment with alcohol.
Gram-negative bacteria are bacteria that do not retain methyl violet dye in the Gram staining method. Gram-positive bacteria will retain the dark purple dye methyl after washing with alcohol, while gram-negative bacteria. In the Gram stain test, a dye (counterstain) added after methyl violet, which makes all the gram-negative bacteria become red or pink. Testing is useful to classify these two types of bacteria based on differences in their cell wall structure.
Characteristic gram-negative bacteria:
-          The structure of the cell wall is thin, about 10-45mm, three-or multi-layer coated
-          the cell Wall contains more fat (11-22%), peptidoglycan layer found in rigid, next to the small amount of 10% of the dry weight, not lactic acid.
-          Less susceptible to penicillin compounds.
-          Not resistant to physical disturbance
The characteristics of gram-positive bacteria:
- The structure of thick walls
- The walls of his cell containing a more normal lipid
- Equity more susceptible to penicillin compounds
- Growth is inhibited significantly by dyes such as crystal violet
- Composition required more complex
- More resistant to physical disturbance.
            Painting gram carried out in 4 stages. Namely
a. Provision of primary colored paint (liquid crystal violet) color purple
b. Pengintensifan paint color with the addition of a solution of Mordant
c. Laundering (dekolarisasi) with acid alcohol solution
d. Giving your opponent the paint color paint safranin

        
Positive gram Bacteria                                              Negative gram Bacteria

b.      Staining Acid Resistant
Staining was directed against bacteria that contain high concentrations of fat (difficult to absorb the dye), but if the bacteria were given special dyes such karbolfukhsin through the heating process, it will absorb the dye and will hold up without being able to laxative by the strongest laxative such as acid-alcohol. Because of these bacteria called acid-resistant bacteria (AFB).
Staining techniques can be used to diagnose the presence of the bacteria that causes tuberculosis is Mycobacterium tuberculosis. There is several ways acid-fast stain, but the most is the way by Ziehl-Neelsen.
Acid Resistant Bacteria (pink) and the bacteria are resistant acid (blue).

3.                  Special coloring to see certain structures: flagella staining, spore staining, capsule staining.
a. Spore Tint
Bacterial spores (endospores) cannot be colored with ordinary staining, special staining techniques are required. Coloring Klein is the most widely used spores. Endospores is Difficult stained with Gram's method. For staining endspores, needs to heating so that the malachite green paint get into the spores, as well as in Basil coloring where the carbol tint fuschsin should be heated to pierce candle membrane of myolic acid of Mycobacterium.
Working principle:
Bacteria spores have thick walls so that the necessary heating for enlarged pores and the fuchsin dye can enter. With washing, pores shrink back that causing fuchsin dye cannot be removed or pass away with acid alcohol, while in the body of bactheria, the color of fuchsin are released and take the blue color from methylen blue.
How It Works:
         Created the bacteria suspension, added with carbol and fuchsin (the volume is same).
         heated on low heat for 6 minutes or in 80oC water bath for 10 minutes.
         Made preparations and dried.
          Entered into H2SO4 1% for 2 seconds
          Entered into alcohol so there is no more red that flowing.
          The preparation washed by water.
          Colored with methylen blue for 1 minute and then washed and dried.
          observe under a microscope.
a.      Flagellum staining
Flagellum staining with gives colloidal suspension of Tannates acid salts that unstable, so it will formed thick precipitates in the cell wall and flagella.
        i.            Capsule staining 
this staining  use a solution of heat violet crystal and solution of copper sulphate as rinsing solvent and will produces pale blue color in capsule. If we use water as rinsing solvent, the capsules can dissolved. Copper salts also give color to the background, were colored dark blue.
4. Special coloring to look at other components and bacteria:
         Neisser staining (granular volutin)
         iodine staining (glycogen granules).
5. negative staining
Purpose : to observe the morphology of organisms which are difficult to colored by the simple staining. Bacteria are not colored, but the background is colored. This method is for bacteria that difficult to colored like Spirochaeta.
The way of negative staining :
Negative staining, this method is not bacteria coloring but to color background become dark black. In this staining microorganisms appear transparent (see-through). This technique is useful to determine the morphology and size of the cell. In this staining, the spread did not heated or hard treatment with chemicals compounds, then the depreciation and one form that is less so the cells can be obtained by determining more precisely. This method uses china paints or inks nigrosin.
Negative staining requires acidic dyes such as eosin or acid negrosin. Acidic dyes has negative charge of  chromogen, it will not penetrate into the cells because the negative charge just present on the bacterial surface. Therefore, colorless cells easily seen with a colored background.












REFERENCES

Dwidjoseputro, D.1998.Dasar-Dasar Mikrobiologi, Malang : Djambatan
Hadiutomo. 1990. Mikrobiologi Dasar Jilid I. Jakarta: Erlangga
Lay, Bibiana.W.1994.Analisis Mikroba di Laboratorium.Jakarta : Rajawali
[17th of February 2013]
Waluyo,lud. 2010. Buku Petunjuk Praktikum Mikrobiologi Umum. UMM. Malang